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INTRODU CT ION

The optimum coding technique for MST radars is that which gives the lowest

possible sidelobes in practice and can be implemented without too much

computing power. Coding techniques are described in FARLEY (1985). The best

technique, in theory, is the complementary code pair. Coherent integration can

be used to reduce the size of the data set, and so the amount of computation is

not excessive. The sidelobes are zero in theory, but when errors induced by

imperfections in the modulation of the transmitter are significant, the quasi-

complementary set gives better results (SULZER and WOODMAN, 1984). However,

this technique requires an extraordinary amount of computation. We discuss

here a technique mentioned briefly in FARLEY (1985), but not fully developed

and in general use. This is decoding by means of a filter which is not matched

to the transmitted waveform, in order to reduce sidelobes belc_ the level

obtained with a matched filter. This is the first part of the technique

discussed here; the second part consists of measuring the transmitted waveform

and using it as the basis for the decoding filter, thus reducing errors due to

imperfections in the transmitter. There are two limitations to this technique.

The first is a small loss in signal-to-noise ratio, which usually is not

significant. The second problem is related to incomplete information received

at the lowest ranges. Appendix A shows a technique for handling this problem.

Firmlly, we show that the use of complementary codes on transmission and non-

matched decoding gives the lowest possible sidelobe level and the minimum loss

in SNR due to the mismatch.

THE CODING-DECODING PROCESS

A model of the coding-decoding process starts with a square pulse of

length t where t corresponds to the desired range resolution and the

square _%_se is _scribed by h _(t), since the pulse may be thought of as the

response of a filter to an impulse, and thus is identified by the impulse

response of this filter. This square pulse is what we would like to transmit

if we had sufficient peak power. If no coding is done, the received signal is

passed through a matched filter and is given by

s(t) = hsq(t)*hsq(-t ) (i)

The impulse response of the matched filter is just the flip of that of the

transmitted signal, or in the frequency domain, the amplitude responses are the

same and the phases are additive inverses.

If we use a phase code, then

s(t) = hsq(t),hc(t),hsq(_t),hdc(t) (2)
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h-(t) is the impulse response of the coding filter. For a binary phase

code hc(t) is a sequence of positive and negative impulses. For normal

decoding h. (t) is the flip of h (t) For a perfect code h (t)*h (-t)C " _- C C _

is an impu_sCe. Imperfect codes will give sidelobes.

Consider the function hdcp(t ) for an arbitrary code such that

hc(t)*hdcp(t) = [impulse] (3)

This is the decoding function which eliminates ell sidelobes. It exists

for most codes, and it is calculated from the Fourier transform of h (t):
C

Hc(f ) = Ac(f)e j [phi(f)] (4)

Then the impulse response of the decoding filter with no sidelobes is

hdcp(t ) = F-l[(llAc(f))e j [-phi(f)]] (5)

As long as Ac(f) has no zeros the inverse exists. The perfect code has
A (f) equal to a constant, and requires no amplitude correction at ell. For
u

good codes, the amplitude function is nearly constant and thus, the inverse

exists and varies little as a function of frequency. The effect of the inverse

amplitude filter is to pass more random noise than in normal decoding. This is

one cost of elimirmting the sidelobes, one that is a function of how good the

code is. With a good code such as the 13-bit Barker code, the loss in signal

to noise ratio is about .25 dB, hardly significant. A randomly selected code

might lose several riB. A second problem is that hdc_(t ) is infinitely long
and thus can never be used exactly for deconvolution P Sometimes this does not

matter, and there are techniques for minimizing the effect when it is important

that sidelobes be kept very small at very close ranges.

EXPERI FENTAL RESULTS

The results of various types of decoding are shown in Figures I through 4.

These consist of the transmitted 430-MHz signal and the received signal

covering a total time period of 256 microsec. The transmitted signal was the

output of a probe in the waveguide; the received signal consisted of ground

clutter and atmospheric scatter. The figures show power versus range, and it

is the ground clutter which is the dominant signal. The two signals were added

at the i.f. (30 Ml{z) level and thus passed through a common 500-kHz Gaussian

filter. The transmitter was coded with a 13-baud Barker code with 2 microsec

baud length. The sampling rate was also 2 microsec. The response of the

sampled transmitted waveform to the decoding process is called the system

function, since it shows the response of the receiver and decoder to a very

narrow target.

Figure 1 shows the power versus range obtained when the transmitted and

received signals are decoded with the Barker code. The main lobe of the

decoded transmitter signal is broadened by the 500-kHz. Gaussian filter and

sidelobes are visible both before and after the main lobe. The sidelobes

before the main lobe are very close to the expected -22 dB level. The side-

lobes following the main lobe are quite different. We shall not discuss the

generating mechanism of these sidelobes except to say that both finite band-

width and nonlinearities are involved, since physical filters can only affect

the signal at later times.

Figure 2 shows the same data decoded with the inverse of the Barker code.

The sidelobes to the left of the main lobe have been considerably reduced,

since the sidelobes due to the code have been removed, while those that are
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left are from imperfections in the transmitted waveform. In the forward

direction, the sidelobes are not significantly changed since the dominant

effect already was the imperfections. The gap between the transmitted and

received slgnals has been partly filled with signal. This has happened because

the first range gates of the received signal contain signal from ranges which

are truncated by the receiver cutoff. Complete decoding is impossible with

either the Barker code or its inverse, but the inverse of the code gives worse

response in this respect because the convolving waveform is longer than the

code. A comparison of the first two figures reveals some reduction in sidelobe

level near the end of the sampled period.

Figure 3 shows the same data decoded with the inverse of the transmitted

waveform. Sidelobes are of course completely removed from the transmitted

signal. The remaining signal at these delays is due to leakage of the

truncated signal to lower altitudes. The range of the leakage has increased

due to the increased length of the inverse code. The effect of the Gaussian

filter has also been removed, and some signal-to-noise ratio has been lost in

doing this. Square pulse matched filters should be used, and then the data

will have the ideal triangular shape which is achieved when using a Gaussian

filter only by some increase in noise. Finally, the decrease in sidelobes is

evident near the end of the sampled time period.

As mentioned before, the leakage due to the truncation of the lower ranges

can be reduced. The technique for doing this is explained in detail in

Appendix A; briefly, the normal decoding method is used to find the signals at

the lower ranges, with sidelobes, of course. The signals from the truncated

ranges can then be subtracted away to an accuracy determined by the sidelobe

level. The nonmatched decoding technique is used with the result that the

range nearest the truncated ranges has leakage about equal to the sidelobe

level of the normal decoding method, but the sidelobe levels decrease quickly

with increasing range. Figure 4 shows a comparison of the decoding with and

without removal of the truncated ranges. The differences in the leakage levels

in the direction of decreasing range are similar to the differences expected in

the other direction. Using the subtraction technique reduces the leakage by

about 20 dB in the lower ranges and it becomes completely insignificant within

one pulse width.

PRACTICAL USES OF THE TECHNIQUE

The complementary code pair provides very low sidelohes in many practical

circumstances. Two cases where it does not are:

1) When the coherence time is short compared to twice the interpulse

period. This is usually the case with incoherent scatter.

2) When transmitter modulation errors are significant.

As long as the coherence time is longer than the pulse length, we can take

any good code and gain a substantial reduction in sidelobes with this

technique.

If transmitter modulation errors are a problem but the coherence time is

long, then we can use a modification of the technique. The complementary codes

are used to modulate the transmitter in the normal way. What is transmitted is

somewhat in error, and when we decode, we choose hdc(t ) for each comple-

mentary code such that the sidelobes of the complementary code are achieved.

In other words, we do not try to get rid of the sidelobes, but merely make

them what they would have been in the absence of the transmitter errors. As

long as transmitter errors are small, this involves a very small correction to

the spectral amplitude function, and hence causes no noticeable loss in signal-
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to-noise ratio. When the returns from the complementary pair are added, there

will be no sldelobes. Since the correction is very small, truncation errors

will also be very ema11.
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Appendix A

Reducing the Effect of Truncated Ranges

The problem with t_he truncated ranges that affects the technique described

in this paper occurs because given an infinite decoding waveform, the extent of

leakage of a range for which the signal is incomplete is infinite. The

solution to the problem depends upon the fact that with normal decoding, only

those heights that are truncated are affected. The explanation of these two

statements requires a detailed ex_,ination of the coded waveform.

Figure A1 shows how this waveform can be broken into its component parts.

Figure Ala shows the radar signal before decoding. No signal is received to

the left of the vertical line because of the receiver cutoff. Figures Alb and

Alc show returns from two ranges. When the returns from these two ranges and

also from all other ranges are added the signal of Figure Ala is obtained. The

signal of Figure Alc is completely to the right of the heavy vertical line, and

this means that we have all the information from that range. On the other

hand, the signal of Figure 2b is partly to the left of the vertical line, and

thus we have only a part of the information from this range. This range is

referred to as a truncated range.

Figure Ald shows the waveform used in normal decoding in a position for

decoding the lowest nontruncated range. Sidelobes from the truncated ranges

are decoded normally, and the lack of information to the left of the vertical

line does not affect the decoding of nontruncated ranges. Figure Ale shows

the inverse of the Barker code placed in position to decode the same lowest

nontruncated range. This waveform extends to the left of the vertical line

and thus requires all the information from the truncated ranges in order to

reject them completely.

In order to reduce this effect, we decode the first n-1 untruncated ranges

using normal decoding (n is the length of the code). This waveform contains

normal sidelobes from the truncated ranges below and the untruncated ranges

above. We recode this signal, which means convolving with the code. Both the

wanted signal and the unwanted sidelobes are convolved with the code and thus

look like coded signals. Next, we replace the first n-1 numbers in the

original coded signal with zeros; this is the first n-1 samples to the right of

the vertical line in Figure Ala. Then, we add to this the recoded waveform

from the last step. Finally, inverse decoding is performed on the composite

waveform. In the lower ranges, we get sidelobe levels about the same as with

normal decoding, but the sidelobes go to zero very quickly as the range

increases.
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Figure AI.


